首页> 外文OA文献 >Benchmarking Data Analysis and Machine Learning Applications on the Intel KNL Many-Core Processor
【2h】

Benchmarking Data Analysis and Machine Learning Applications on the Intel KNL Many-Core Processor

机译:基于数据分析和机器学习应用程序的基准测试   英特尔KNL多核处理器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Knights Landing (KNL) is the code name for the second-generation Intel XeonPhi product family. KNL has generated significant interest in the data analysisand machine learning communities because its new many-core architecture targetsboth of these workloads. The KNL many-core vector processor design enables itto exploit much higher levels of parallelism. At the Lincoln LaboratorySupercomputing Center (LLSC), the majority of users are running data analysisapplications such as MATLAB and Octave. More recently, machine learningapplications, such as the UC Berkeley Caffe deep learning framework, havebecome increasingly important to LLSC users. Thus, the performance of theseapplications on KNL systems is of high interest to LLSC users and the broaderdata analysis and machine learning communities. Our data analysis benchmarks ofthese application on the Intel KNL processor indicate that single-coredouble-precision generalized matrix multiply (DGEMM) performance on KNL systemshas improved by ~3.5x compared to prior Intel Xeon technologies. Our dataanalysis applications also achieved ~60% of the theoretical peak performance.Also a performance comparison of a machine learning application, Caffe, betweenthe two different Intel CPUs, Xeon E5 v3 and Xeon Phi 7210, demonstrated a 2.7ximprovement on a KNL node.
机译:Knights Landing(KNL)是第二代Intel XeonPhi产品系列的代号。 KNL在数据分析和机器学习社区引起了极大的兴趣,因为其新的多核架构同时针对这些工作负载。 KNL多核向量处理器设计使其能够利用更高水平的并行性。在林肯实验室超级计算中心(LLSC),大多数用户正在运行数据分析应用程序,例如MATLAB和Octave。最近,诸如UC Berkeley Caffe深度学习框架之类的机器学习应用对于LLSC用户变得越来越重要。因此,LLSC用户以及更广泛的数据分析和机器学习社区对这些应用程序在KNL系统上的性能非常感兴趣。我们在Intel KNL处理器上针对这些应用程序的数据分析基准表明,与以前的Intel Xeon技术相比,KNL系统上的单核双精度广义矩阵乘法(DGEMM)性能提高了约3.5倍。我们的数据分析应用程序也达到了理论峰值性能的60%左右。此外,两个不同的Intel CPU Xeon E5 v3和Xeon Phi 7210之间的机器学习应用程序Caffe的性能比较显示KNL节点的性能提高了2.7倍。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号